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Abstract— Localization is crucial for wireless ad hoc and 
sensor networks. As the distance-measurement ranges are 
often less than that of the communication range for many 
ranging systems, most communication-dense wireless net-
works are often localization-sparse. Consequently, most 
existing algorithms fail to provide accurate localization 
supports. In order to address this issue, by introducing a 
concept of component, we propose to group nodes into 
components, so that nodes are able to better share their 
ranging and anchor knowledge. This design, CALL, re-
laxes two essential restrictions in localization: node order-
ing and anchor distribution. We evaluate the effectiveness 
of CALL through extensive simulations. The results show 
that CALL locates 80% nodes in a network with average 
degree 7.5 and 5% percent anchors, which outperforms 
the state of the art design Sweeps about 20%. 

I. INTRODUCTION 
Location in wireless sensor networks (WSNs) is critical 

for both network operation and data interpretation [1]. Practi-
cally, it is difficult to equip each sensor with a positioning 
device. Instead, only a few sensor nodes, called anchors, 
know their locations, and other nodes estimate their locations 
through inter-node measurements from anchors [2]. Most 
existing localization algorithms require the network have a 
high density and sufficient anchors before the nodes can be 
accurately localized. Localization in sparse networks with 
few anchors is not fully addressed [3]. Indeed, a sparse net-
work for localization is often dense in communication, be-
cause the distance-measurement ranges are typically much 
less than that of communication range for many ranging sys-
tems [4]. 

Eren and Goldenberg et al. [5, 6] investigate the theoreti-
cal conditions for network localization. They show that a net-
work can be uniquely localized if and only if its correspond-
ing grounded graph [5] is globally rigid and with at least three 
anchors embedded. The sufficient and necessary conditions 
for a graph to be globally rigid are: the graph is redundantly 
rigid and triconnected. Together with three anchors embed-
ded, those three conditions are presented as RRT-3B [6]. 
RRT-3B is able to effectively test the localizability of a 
whole network. Further, it also identifies the localizable 
nodes set under general graph assumption, which makes 
RRT-3B a criterion to evaluate the efficacy of localization 
algorithms. To the best of our knowledge, there are no local-
ization algorithms that can explicitly achieve the amount of  

localizable nodes as RRT-3B conditions. 
The state of the art approximation algorithm to RRT-3B 

capability is Sweeps [3]. Sweeps utilizes the concept of finite 
localization to relax the node participating conditions from 
trilateration to bilateration. Due to its dependence on each 
single node to estimate the localizability locally, however, 
Sweeps suffers the restriction on the anchor distribution. If no 
nodes can find at least two anchors among its direct 
neighborhood, the algorithm cannot be initialized. Further, 
Sweeps localizes nodes by bilateration to “swept” nodes, 
which necessarily conduct localizing nodes spreading along 
the sequence of bilaterations [3]. When no nodes can perform 
the bilateration operation, the procedure stops, and even lo-
calizable nodes still exists. 

Such limitations results in more consequences in localiza-
tion-sparse networks. To address this issue, we propose a 
Component-bAsed Localization aLgorithm, CALL. CALL 
groups nodes into small components, and then merges the 
components recursively into a bigger one until it is realizable 
in a plane. By offering many advantages over node-based 
ones, such as favoring the large-scale localization information 
aggregation, facilely exploiting the anchor proximity, CALL 
can locate almost all localizable nodes which RRT_3B identi-
fies. It does not rely on any certain network communication 
or ranging models, and neither requires specified anchor dis-
tribution. 

Major contributions of this work are as follows. 
1) We introduce the concept of component, and present 

a component-based algorithm CALL, which improves the 
proportion of localized nodes in sparse networks. 

2) We propose a mechanism called finite mergence to 
stitch components for general component-based localization 
method. Further, we relax the anchor requirement conditions 
to facilitate component localization. 

3) We conduct large-scale simulations to testify the effi-
ciency of CALL. The results show that this algorithm can 
accurately locate 80% nodes in a network with average de-
gree 7.5 by 5% percent anchors, which outperforms Sweeps 
about 20% in average. 

The rest of this paper is organized as follows. We first 
discuss existing studies in Section II, and then describe the 
design of component-based localization algorithm in Section 
III. We build the theoretical foundations in Section IV, and 
discuss some critical issues in Section V. Finally, we evaluate 
the performance of CALL in Sections VI, and conclude this 
work in Section VII. 
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II. RELATED WORK 

Recently, there are a plethora of works on localization in 
WSNs [7], falling into two categories: range-based [3, 8-14] 
and range-free [1, 15]. Range-free algorithms do not rely on 
measurement techniques but normally require high network 
density to approximate distance by connectivity [1]. Our 
work focuses more on range-based designs for sparse net-
works, so we briefly review the classical range-based algo-
rithms in this section. 

Savarese et al. [9] proposed a virtual coordinate based al-
gorithm TERRAIN to solve the sparse anchor problem. 
TERRAIN adopts virtual coordinates and takes the advantage 
of the property that the virtual coordinate holds the distance 
information between each node pair. The essential principle 
used by TERRAIN is triangulation. By using virtual coordi-
nates on each anchor, TERRAIN extends the ranging distance 
of anchors and makes each node triangulate to the enlarged 
anchors. In section III, we will show that CALL needs far less 
information to realize or aggregate nodes than all trilateration 
based algorithms, including TERRAIN. Thus CALL per-
forms much better than TERRAIN in sparse networks. 

Some researchers utilized local maps to localize nodes [10, 
11]. They first use distance measurements between neighbor-
ing nodes to construct local maps, and then stitch them to-
gether to form a global map. Intuitively, components in 
CALL share similar notions with the local map. Nevertheless, 
the two methods are different greatly in the manner of mer-
gence. In local map based methods, two maps are integrated 
by their common nodes, which means the common nodes 
need to be prior localized in their respective map. Hence, it is 
hard to stitch local maps in sparse networks for the severe 
restriction of common nodes. Comparatively, in CALL, com-
ponents are merged by adjacent edges between component 
pair, which is easy to fulfill. Such difference affects the suc-
cess of mergence as well as the applicability in sparse net-
works. 

Savvides et al. [12] attempted to reduce the information 
requirement. They use collaborative multilateration among 
neighbors to remedy the ranging information shortage, which 
localizes nodes by forming an over-determined system of 
equations with a unique solution set. Collaborative multilat-
eration performs better than trilateration in sparse networks. 
The disadvantage is that the collaboration is restricted in 
neighbors, so that the performance gain is limited. 

As a pioneering work, Goldenberg et al. proposed Sweeps 
[3], which holds all possible positions of each node and 
prunes incompatible ones when other nodes attend the proce-
dure. Sweeps furthest relaxes the requirement of node-based 
localization and achieves pretty good results in sparse net-
works. Given proper anchor distribution, Sweeps is able to 
localize a whole globally rigid region [3], but may fail to lo-
calize other regions that contain few anchors. Comparing 
with Sweeps, CALL is able to identify most of such regions 
and proper localize almost all of the localizable ones accord-
ing to RRT-3B. The localizable nodes of CALL are a superset 
of that of Sweeps. 

 
III. COMPONENT BASED LOCALIZATION 

In this section, we introduce the idea of component-based 
localization. We will describe the rationale of CALL in Sec-
tion IV. 

A. Preliminary 
We assume that each node locates at the distinct physical 

location in a plane, and some anchor nodes are able to acquire 
their physical positions. Each node can accurately measure 
the distance to its neighbors utilizing some equipments. Sup-
pose there are n  nodes in the plane, labeled as 1 2, , , nv v v , 
and the physical position of node iv  is denoted by iP . The 
indices of k anchor nodes are notated as ia , [1, ]i k . Based 
on the ranging information, we generate a ranging graph 

,G V E , where each vertex denotes a node in the net-
work and each edge means that its two-endpoint nodes can 
directly get the distance information of each other. For each 
edge ( , )i jv v E  , [1, ]i j n , ijd  denotes the distance be-
tween iv  and jv . 

A realization of ranging graph G  is a mapping 
2:f V R  such that 1) ( )

i ia af n P  for [1, ]i k , and 2) 
for each edge ( , )i jv v E , || ( ) ( ) ||i j ijf v f v d . Analo-
gously, we can define the concept of realization on the sub-
graph of G , and the only difference is that we do not differ-
entiate the rotations, translations, and reflections of the map-
ping when operating on a subgraph. A node is localizable if 
and only if its image is unique for all realizations of G . A 
node is finitely localizable if and only if the number of all its 
possible images are finite for all realizations of G . If a local-
ization algorithm can generate the unique result for a localiz-
able node, we say the node is localized by the algorithm. If a 
localization algorithm can generate all of the possible posi-
tions for a finitely localizable node, we say the node is 
finitely localized by the algorithm. 

B. BCALL Algorithm 
There are two versions of CALL: the basic version 

(BCALL) and the general version (CALL). BCALL can ter-
minate in polynomial time. In contrast, CALL cannot guaran-
tee to terminate in polynomial time, but with better efficacy 
than BCALL. Both of them follow three major steps: compo-
nent generation, component mergence and component reali-
zation. We first introduce the basic idea of component-based 
localization through BCALL, and then present CALL by 
comparing it with BCALL. 

Before we begin more detailed discussion of BCALL, we 
first introduce the formal definition of component. Given a 
ranging graph G , a component is a group of vertices that 
have finite realization possibilities. A component is globally 
rigid if and only if there is a unique realization in a plane. An 
isolated node in G  is a node that does not belong to any 
components. 

1) Component generation 
Component generation partitions the network into glob-

ally rigid components and isolated nodes. After component 
generation, all nodes either belong to a component or become 
isolated nodes, and each node can only join in one component. 
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We do not distinguish anchor nodes and general nodes in this 
procedure. 

A component is formed by a triangle in G  initially; 
other nodes can join the component by trilateration to the 
nodes in the component. By this means, a component can 
expand as large as possible while keeping globally rigidity. 

Each component has a local coordinate system that indi-
cates the relative position of each node in the component. As 
previously mentioned, a component is initially formed by a 
triangle in G . Accordingly, the local coordinate system of 
the component is generated according to the relative position 
of the initial vertices in the initial triangle. The other nodes 
then join in the component calculate and record their coordi-
nates when they process trilaterations. 

After component generation, components further make a 
decision about whether they are realizable. If a component is 
realizable, then it will enter component realization procedure. 
Otherwise, those non-realizable components will try to merge 
with other components and perform the component mergence 
procedure. Merging components potentially make some non-
realizable components capable to be realized, because 1) the 
mergence causes the merged components to aggregate both 
their nodes and their anchor information, and 2) the realizing 
requirements for a component are independent with the num-
ber of nodes in the components. 

2) Component mergence 
Component mergence integrates two components into a 

bigger one. Only those components that fulfill the merging 
conditions can process component mergence. For BCALL, it 
requires the resultant component to be globally rigid. After 
merged, the local coordinate systems of the two components 
must be consistent. We accomplish this by converting the 
local coordinate system of a component to that of the other 
one. The merging conditions guarantee the feasibility of the 
conversion. 

Component mergence is a recursive process, because new 
merging opportunities may emerge after a round of mergence. 
In other words, some mergence can make other components 
or isolated nodes capable to merge into the resultant compo-
nent. Component mergence process stops when no such mer-
gence can process or the resultant component is realizable. 

3) Component realization 
Component realization converts the local coordinate sys-

tem of the component into the physical one. Only those com-
ponents that fulfill the realizing conditions can process com-
ponent realization. For BCALL, it requires the realization to 
be unique. The realization is done by mapping the local coor-
dinates to physical positions. 

Components are merged and realized as a whole. The 
nodes belonging to the same component are localized simul-
taneously. This is the main difference between component-
based algorithms and node-based ones. 

4) BCALL complexity analysis 
In a macro view of BCALL, we show the integrated pro-

cedure in Algorithm 1. In Section IV, we will describe the 
rationale of the rules, by which BCALL integrates and real-
izes components. 

Algorithm 1  BCALL 
Input: the ranging graph G 
Output: the realized nodes of G 
1: Invoke component generation process to partition G into 

components and isolated nodes 
C = GenerateComponents(G) 
C1 =  

2: while C is not empty and C C1 do 
3: C1 = C 
4: Perform component realization to realize the compo-

nents in C1 
C1 = BasicRealizeComponents(C1) 

5: Further merge components in C1 
C = BasicMergeComponent(C1) 

6: Return the localized node set NL = V(G)\V(C), and their 
realization 

GenerateComponents(G) 
1: Assign component set C to be empty 
2: while G contains triangles do 
3: Select an arbitrary vertex included by a triangle

v V(G) as sponsor node, and construct a local coor-
dinate system from the triangle; Create the component 
Cv 

4: while existing a node u in G\Cv neighboring to Cv, and 
existing trilateration between u and component Cv do

5: Cv = Cv  u 
6: G= G\Cv 
7: C = C  Cv 
8: The remainder is isolated nodes 

 C = C  G 
Return C 

BasicRealizeComponents(C) 
1: Label anchors as realized nodes 
2: Assign set NR to be all realized nodes 
3: for each isolate node n C do 
4: if n can find three edges link to realized nodes in NR

then NR= NR n, C=C\n 
5: for each component c in C do 
6: if Component c (1) contains three anchors, or (2) con-

tains two anchors and a non-anchor node sharing an 
edge with a realized node; or (3) contains one anchor 
and two distinct non-anchor nodes sharing two edges 
with two distinct nodes which are realized; or (4) there 
are at least four independent edges connecting the 
component c with realized nodes. then 

7: Label c as realized component, and C= C\c 
8: Return C 

BasicMergeComponents(C) 
1: If an isolated node n can process trilateration to a com-

ponent c then 
2: c1=c  n 
3: C=C\c 
4: C = C  c1 
5: If two components c1 and c2 fulfills that (1) there are at 

least four independent edges connecting the two compo-
nents; and (2) there are at least three vertices in each 
component associated with these edges. then 

6: c=c1  c2 
7: C=C\c1, C=C\c2 
8: C = C  c 
9: Return C 
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BCALL produces globally rigid components and proc-
esses unique realization. It operates on the set C whose size is 
bounded by the total number of nodes n. Moreover, all steps 
in Algorithm 1 will strictly diminish the size of set, and can 
terminate in polynomial time. Hence, BCALL can terminate 
in polynomial time. 

C. CALL Algorithm 
In this section, we first introduce CALL design by com-

paring with BCALL, and then demonstrate CALL execution 
in a randomly generated network. 

1) CALL design 
Comparing with BCALL, CALL relaxes the constraints in 

two aspects. First, CALL does not demand the resultant of 
mergence to be globally rigid. Second, CALL does not re-
quire component realization to be unique. That is, two com-
ponents can merge if the resultant component has finite reali-
zation possibilities, and a component can be realized when 
the number of possible realizations is finite. The aim of 
CALL is to realize components with best efforts, then prune 
the redundant possibilities when enough information avail-
able. 

The relaxations cause nodes to have several possible posi-
tions. CALL records these positions in the potential position 
set on each node, which indicates the all possible coordinates 
of the node in the local coordinate system or physical coordi-
nate system. 

CALL adds a sub-step in each procedure to handle the po-
tential position sets. After each mergence or realization, all 
nodes will prune the incompatible items in the potential posi-
tion sets. Incompatible items are those that produce no logi-
cal results. The procedure goes on until no incompatible 
items exist. When neighboring components are both realized, 
the inconsistent items in their potential position sets will also 
trigger the conflict resolution procedure as mentioned. 

Finally, all nodes belonging to realized components are 
finitely localized. The residual items in potential position set 
of each realized node indicates the possible positions of the 
node. We show the procedure of CALL in Algorithm 2. In 
Section IV, we will explain the reason why the rules in Algo-
rithm 2 guarantee the mergence and realization to be finite. 

Unfortunately, this procedure cannot guarantee to termi-
nate in polynomial time, because the potential position set 
may grow exponentially in the worst case. We will discuss 
this problem in Section V. 

2) Example of CALL execution 
We demonstrate the CALL execution by highlighting the 

component mergence procedure. We take Figure 1 as an ex-
ample. In the graph 100 nodes are randomly deployed in a 
square region under UDG model [16]. The average degree is 
about 6.Figure 1 shows the state after component generation. 
The lowercase letters represent the generated components, 
and the isolated nodes are labeled with numbers. We use {a,b} 
represents the resultant component composed by component 
a and b. The bold letters denote globally rigid parts whose 
possible locations in the merged components are unique. We 
start from a randomly selected component, supposing the  

Algorithm 2  CALL 
Input: the ranging graph G 
Output: the finitely realized nodes of G 
1: Invoke component generation process as BCALL to par-

tition G into components and isolated nodes 
C = GenerateComponents(G) 
C1 =  

2: while C is not empty and C C1 do 
3: C1 = C 
4: Perform component realization to realize the compo-

nents in C1 
C1 = RealizeComponents(C1) 

5: Further merge components in C1 
C = MergeComponent(C1) 

6: Return the localized node set NL = V(G)\V(C), 
and their potential position sets 

RealizeComponents(C) 
1: Label anchors as realized nodes 
2: Assign set NR to be all realized nodes 
3: for each isolate node n C do 
4: if n can find two edges link to realized nodes in NR

then  
5: NR= NR n, C=C\n 
6: Update the potential position sets and prune all the 

incompatible items 
7: for each component c in C do 
8: if Component c (1)contains two anchors, or (2) Con-

tains an anchor and a non-anchor node sharing an 
edge with a realized node; or (3) there are at least 
three edges connecting c with at least two distinct 
nodes which are realized, and there are at least two 
vertices associated with these edges in c. then 

9: Label c as realized component 
10: Update the potential position sets and prune all the 

incompatible items 
11: C= C\c 
12: Return C 
MergeComponents(C) 
1: If an isolated node n can process bilateration to a com-

ponent c then 
2: C=C\c 
3: c=c  n, C = C  c 
4: Update the potential position sets and prune all the in-

compatible items 
5: If two components c1 and c2 fulfills that (1) there are at 

least there independent edges connecting the two com-
ponents; and (2) there are at least two vertices in each 
component associated with these edges. then 

6: c=c1  c2 
7: C=C\c1, C=C\c2 
8: C = C  c 
9: Update the potential position sets and prune all the in-

compatible items 
10: Return C 

upper left component d. We follow the mergence procedure 
serially and compact several mergence operations into one 
step, because the merging sequence does not influence the 
result. The execution of component mergence is as follows. 
1. Component d can merge component e and node 4 finitely, 

and we get {d,e,4}. 
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Fig. 1.  Example of CALL execution. 

 
2. The resultant component can merge component a finitely, 

thus we get {d,e,a,4} 
3. The resultant component can merge node 5 finitely. We 

get {d,e,a,4,5}. 
4. Component b has five edges shared with {d,e,a,4,5}, and it 

provides additional information to prune redundant items. 
As a result, it makes component a,e and node 5 finalized, 
and generates {d,e,a,b,5,4}. 

5. The resultant component can merge component g uniquely 
and component f,h finitely. We get {d,e,a,b,g,f,h,5,4}. 

6. The resultant can merge nodes 9,11 finitely and compo-
nent c uniquely. By the information provided by compo-
nent c, node 4 and component f are finalized. We get 
{d,e,a,b,g,f,c,h,5,4,9,11} 

7. The resultant component can merge component i finitely. 
The final result is {d,e,a,b,g,f,c,h,i,5,4,9,11} and the com-
ponent mergence procedure finishes. 
After this procedure, a component {d,e,a,b,g,f,c,h,i,5,4,9, 

11} is formed. It covers most nodes in the network and judges 
realizable as a whole. For example, if node 4,5,1 are anchors, 
the final result will be {d,e,a,b,g,f,c,h,i,5,4,9,11,1}, in which 
the bold letters presents the uniquely localized nodes and oth-
ers presents finitely localized nodes. If node 8 is also an an-
chor, then component j will be realized finitely. Moreover, 
the reflected position of node 9 cannot generate any results in 
this realization process, and this realization makes node 9 
finalized. 

IV. THEORETICAL FOUNDATIONS 
In this section, we introduce the rationale behind the rules 

for component mergence and component realization used in 
BCALL and CALL. 

Lemma 1. Two globally rigid components can merge into 
a component if 1) there are at least three edges connecting the  

1 1,x y
1r

2 2,x y
2r

,x y

1l

2l

,x y 1l

2l ,a ax y

,b bx y

 
Fig. 2.  Proof of component mergence. 

 
two components and 2) there are at least two vertices in each 
component associated with these edges. 

Proof: Given two globally rigid components A and B, they 
are connected by three edges. We label the vertices associated 
with these edges 1, 2, 3 in A and a, b, c in B. Without loss of 
generality, the three edges connecting the two components 
are denoted as (1,a), (2,b), and (3,c) respectively. The dis-
tance of each edge is denoted as 1 1ar d , 2 2br d , and 3 3cr d . 

We merge these two components by converting the local 
coordinate system of B to that of A. Instead, we accomplish 
the conversion by converting the coordinate of vertex a, b, 
and c, and convert other vertices based on conversion of these 
vertices. 

If node 1, 2, 3 or node a, b, c are not distinct nodes, then 
the convention can be done by a series of bilaterations. Ap-
parently, the results are finite. 

We now consider the case that node 1, 2, 3 and node a, b, 
c are distinct nodes . Let 1 1( , )x y , 2 2( , )x y and 3 3( , )x y  denote 
the original coordinates of vertex 1, 2, and 3 in the local co-
ordinate system of A. Let ( , )a ax y , ( , )b bx y , and ( , )x y denote 
the converted coordinates of vertex a, b, and c in the local 
coordinate system of A. The distances of ab, ac, and bc hold 
through the mergence, hence we use two distances 1 acl d , 

2 bcl d and their angular separation  to represent this re-
lationship. We introduce a parameter  to simplify the ex-
pressions, which denotes the angular separation of line ac and 
the x-coordinate. 

First, as shown in Figure 2, we ignore the edge (3,c). Then 
triangle abc can flip against axis ab, denoted by the dashed 
line. We take x, y, and  as unknown variables, then the 
coordinates of vertex a and b can be expressed as: 

1

1

cos
sin

a

a

x x l
y y l

                                  (1) 

2

2

cos( )
sin( )

b

b

x x l
y y l

                             (2) 

Considering the edges (1,a) and (2,b), we have: 
2 2 2

1 1 1 1 1
2 2 2

2 2 2 2 2

( cos ) ( sin )
( cos( ) ) ( sin( ) )
x l x y l y r
x l x y l y r

   (3) 

After expending equations in (3), we obtain binary linear 
simultaneous equations about sin and cos . We use substi-
tution as follows: 
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Fig. 3.  All possibilities of certain component mergence 
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1 1 1 1
2 2 2 2

2 2 2 2

2( )
2( )
2 (( ) cos ( )sin )
2 (( ) cos ( )sin )

( ) ( )
( ) ( )

a x x l
b y y l
c l x x y y
d l y y x x

e r l x x y y
f r l x x y y

               (4) 

Eliminating the parameter , and we have: 
2 2 2( ) ( ) ( )bf de ce af bc ad                    (5) 

Substitute the parameters of (5) by equations in (4). We 
obtain an expression of x and y. 

Considering the edge (3,c), we have: 
2 2 2

3 3 3( ) ( )x x y y r                              (6) 
Solving the simultaneous equations formed by (5) and (6), 

we can calculate the values of x and y. Thus we can get the 
values of  by equation (3). The new coordinates of a and b 
can also be calculated by equation (1) and (2). 

It is easy to verify that equation (5) is a sextic equation 
and equation (6) is a quadratic equation. By Bézout’s theorem 
[17], the maximum number of real roots of simultaneous 
equations (5) and (6) is twelve. Considering the flip ambigu-
ity, the maximum number of possibilities is twenty-four. The 
resultant component has finite realization possibilities in a 
plane.                                            

Actually the bound of solution number is not tight, and it 
can be improved by exploiting the speciality of the equation 
(5) and (6). Practically, the number of real roots is quite 
smaller than the theoretical upper bound, typically less than 
eight. Figure 3 shows all the possibilities of a typical compo-
nent mergence. 

Theorem 1 (Mergence for BCALL). If two globally rigid 
components can merge into one globally rigid component, 
then 1) there are at least four edges connecting the two com-
ponents and 2) there are at least three vertices in each compo-
nent associated with these edges. 

Proof: By Lemma 1 at least four edges are required for 
generating a globally rigid component, or the resultant com-
ponent may have several realization possibilities. If only two 
distinct vertices connect any side of the merged component, it 
may be ambiguous due to flipping against the axis of these 
two vertices. Hence, it requires at least three distinct vertices 
in each component to form a globally rigid component.     

Theorems 1 provides the necessary conditions for how 
components can be merged and keep globally rigidity. Let us 
consider the example shown in Figure 4. The two compo-
nents follow the conditions in Theorem 1, but the resultant 

component can flip against axis 1c. We say four edges inde-
pendent if they hold globally rigidity in the mergence. In 
BCALL, we require the edges used for component mergence 
to be independent. 

Theorem 2 (Finite mergence for CALL). Two components 
can merge into a component if 1) there are at least three edges 
connecting the two components and 2) there are at least two 
vertices in each component associated with these edges. 

Proof: All vertices in each component have finite poten-
tial position possibilities. By Lemma 1, the resultant compo-
nent has realization possibilities bounded by the product of 
each possibility i.e. the possibility of mergence and possibili-
ties of these vertices.                                

Theorem 3 (Finite mergence for nodes). A node can be 
merged to a component by two edges connecting to the com-
ponent. 

Proof: The maximum possibilities of localizing a node by 
two edges are two. Hence, the potential coordinates of the 
node in the local coordinate system are the enumeration of all 
the possibilities.                                  .  

Theorem 4 (Realization for CALL). A component can be 
realized to finite possibilities by fulfilling at least one of fol-
lowing conditions: 

a) Contains two anchors; 
b) Contains one anchor and a non-anchor node sharing 

an edge with a realized node; 
c) There are at least three edges connecting the compo-

nent with at least two distinct nodes which are realized, and 
there are at least two vertices associated with these edges in 
the component. 

Proof: a) Each node in the component has finite distance 
possibilities to these two anchor nodes. By Theorem 3 they 
can calculate finite potential positions in physical coordinate 
system. Thus the component can be realized in finite possi-
bilities. 

b) The node sharing a common edge with a realized node 
has finite possibilities to be realized by Theorem 3. Thus this 
case can be converted to case a). 

c) Take the physical plane as a virtual component. By 
Theorem 2 we can merge the component to the virtual com-
ponent by three edges. The local coordinate system formed 
by anchors is a physical coordinate system, thus the merged 
components can be realized to finite possibilities.         

Corollary 1 (Realization for BCALL). A globally rigid 
component can be uniquely realized by containing three dis-
tinct vertices fulfilling one of following conditions: 
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Fig. 4.  Counterexample of globally rigid merging condition 

 
a) They are three anchors; 
b) They are two anchors and a non-anchor node sharing 

an edge with a realized node; 
c) They are one anchor and two distinct non-anchor 

nodes sharing two edges with two distinct realized nodes; 
d) There are at least four independent edges connecting 

them with at least three distinct realized nodes. 
Proof: Each condition is generated by adding a new re-

striction to each condition of Theorem 4 to eliminate the am-
biguity. Thus it can be concluded by Theorem 4 and Theorem 
1 in each case.                                     

V. DISCUSSION 
In this section, we discuss some practical issues of CALL 

and the solutions to address them. 

A. Distributed Implementation 
In practical implementations, nodes are difficult to get the 

global view of components in the whole network. They only 
know their component ID and local coordinates in the com-
ponent. Nevertheless, CALL requires cooperating in two as-
pects behaviors: local coordinate system creation in compo-
nent generation and information gathering in component 
mergence or component realization. 

Local coordinate system creation requires compatible co-
ordinate assignment. CALL designates the sponsor node of a 
component create local coordinate system according to the 
distances between the initial nodes. Then other nodes can join 
in the component by trilateration. The course can be carried 
out in a fully distributed fashion. 

Information gathering requires components to aggregate 
all information about neighboring components and realized 
nodes. CALL adopts GHT [18] to tackle this problem. CALL 
hashes information by the source target id of the information, 
and the realized nodes shares the same id. Hence, those speci-
fied nodes can gather enough information about whether this 
component can be realized or merged with others. If realiza-
tion or mergence is triggered, then the convention of local 
coordinate systems can be done by broadcasting a message 
that indicates the mapping rules. 

B. Impact of Ranging Errors 
In actual network, ranging errors always exist. CALL is 

not applicable in this situation, because CALL may eliminate 
correct item by some ambiguous values. Fortunately, we can 
extend BCALL to handle this problem, because rules of 
BCALL provide redundant information in each step to miti-

gate the impact of errors. Hence, we can merge and realize 
components by a improved version of Coordinate System 
Registration [11]. 

Another problem induced by ranging errors is that the re-
sult will decay rapidly by errors accumulation. This is in na-
ture unsolvable by localization algorithms, thus the effective 
way to solve this problem is improving ranging accuracy or 
increasing network and anchor density. 

C. Computation Complexity 
As previously mentioned, CALL cannot guarantee to ter-

minate in polynomial time, because the size of potential posi-
tion set may increase exponential in the worst case. We can 
mitigate the explosion of set size by endowing a higher prior-
ity of such mergence that produces smaller result set. This 
mechanism, however, does not change the inherent complex-
ity of CALL, and it is impractical for those resource-
constrained sensor nodes to maintain huge data. Hence, it is 
necessary for nodes to judge before each mergence and ter-
minate the intolerable ones, even though this method is nega-
tive for localization itself. 

Computation cost of coordinate conversion is also not 
trivial. Lemma 1 provides a way to calculate the converted 
coordinates, but it may need to solve nonlinear simultaneous 
equations. There are no analytic solutions for the equations. 
However, numerical approaches using the iterative or homo-
topy method [19] can solve this problem efficiently. These 
methods does not require much resource, thus can be applied 
to sensor nodes. 

VI. SIMULATION RESULTS 

A. Experiment Setup 
We generate uniformly random networks of 200 nodes in 

a square region with diversified average neighbor number and 
anchor number. We use 1/ 2 -QUDG model to get more 
realistic topology. Moreover, the connectivity information for 
distances between 1/ 2  and 1 is estimated by linear prob-
ability. The network connectivity is controlled by the ranging 
radius of each node. In order to mitigate the randomness, we 
repeat each experiment 20 times and report the average of 
outputs. 

We evaluate our algorithm by comparing with two typical 
approaches Sweeps [3] and RRT-3B [6], which we have dis-
cussed in Section I and II. Sweeps is the most effective local-
ization algorithm in sparse networks and it outperforms other 
trilateration-based algorithms much [3]. RRT-3B can identify 
most of localizable nodes in a general network, thus provides 
a criterion of localization algorithms. 

We consider two metrics for performance evaluation, 
proportion of localized nodes and the size of potential poison 
set. The proportion of localized nodes shows the efficacy of 
each algorithm, and the size of potential poison sets indicates 
the cost of each algorithm. We do not evaluate the communi-
cation cost, because localization only needs one-time-
execution during network startup and we can afford an ac-
ceptable communication cost in such condition. 
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Fig. 5.  Proportion of uniquely localized nodes with anchor density 
varying. 
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Fig. 6.  Ratios to RRT-3B with anchor density varying. 
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Fig. 7.  Proportion of finitely localized nodes with anchor density 
varying. 
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Fig. 8.  Proportion of uniquely localized nodes with the average 
degree varying. 

 

B. Localized Nodes Against Anchor Density 
Figure 5-7 show the proportion of localized nodes by each 

algorithm when anchor density varies. In each case, the aver-
age degree of the generated network varies from 6 to 7. The 
mean value is about 6.5. 

Figure 5 plots the proportion of uniquely localized nodes. 
As the anchor density increases, all algorithms can locate 
more nodes relatively. It is a bit counter-intuitive that CALL 
can always localize exactly the same nodes as RRT-3B iden-
tifies. This demonstrates that CALL can perform exhaustive 
information gathering. CALL, however, is not strictly equal 
to RRT-3B. An example is 3,4K , which is globally rigid but 
contains no trilaterations. In such graph, no component can 
form, but it is a localizable graph in theory. Such cases al-
ways exist when the number of vertices is above seven, and 
none of the sub-graphs in those graphs are globally rigid. 
That is to say, the only way to identify these globally rigid 
parts is to check all possible node sets. This procedure re-
quires an exponential computation cost. That is why CALL 
does not find all globally rigid parts of a network in compo-

nents generation step. Nevertheless, such examples can rarely 
be generated in randomly scattered networks. Hence, CALL 
can localize the same number of nodes as theoretical limits in 
most cases. CALL outperforms Sweeps especially when an-
chors are sparse. The difference between Call and Sweeps 
reduces with the increase of the percentage of anchors, and 
becomes slight when the percentage of anchors is over 8%. 

Figure 6 is a transformed version of Figure 5. We use 
RRT-3B as a general metric and compare the algorithms by 
their localized radios to RRT-3B. Under this view, CALL is 
quite stable, Sweeps tends to approach CALL when anchor 
density enlarges. In average, the performance gain of CALL 
is about 20% higher than Sweeps. 

Figure 7 shows the proportion of nodes with finite possi-
bilities when the anchor density varies. CALL localizes larger 
number of nodes in finite states than Sweeps does, since 
CALL has the ability of integrating information though the 
whole network and can identify most finitely localizable 
nodes. The number of finitely localized nodes decreases when 
the anchor density increases. The inherent reason is that the 
total amount of finitely localizable nodes in a network is  
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Fig. 9.  Ratios to RRT-3B with the average degree varying. 
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Fig. 10.  Proportion of finitely localized nodes with the average 
degree varying. 
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Fig. 11.  Distribution of possibilities on each node. 
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Fig. 12.  Distribution of average possibilities. 

 
reduced when more anchors exist. In contrast, the number of 
finitely localized nodes by Sweeps is quite noisy. This phe-
nomenon can be observed with independent of anchor density. 
This can be explained as Sweeps can uniquely localize a 
whole globally rigid region [3] and localize nodes on the bor-
der of the region finitely. The size and number of border 
nodes of such regions are both random [6]. 

C. Localized Nodes Against Network Density 
Figure 8-10 report the proportion of localized nodes by 

each algorithm when the average degree of the network varies. 
We fix the anchor density in 5%. 

Figure 8 shows the proportion of uniquely localized nodes. 
As the average degree increases, all algorithms locate more 
nodes relatively. When the average degree is greater than 10, 
the improvement of CALL turns to be trivial. This is an ex-
perimental boundary of whether CALL is applicable. It is 
also approved in this figure that CALL can locate almost the 
same number of nodes as RRT-3B identifies. 

We also plot the ratios of each algorithm to the RRT-3B 
in Figure 9. From this figure, we can conclude that Sweeps 
performs better when network density enlarges, because 

Sweeps specializes in localizing a single globally rigid region 
and can localize most of nodes when the whole network is 
globally rigid. The two algorithms make little difference 
when average degree is over 10. 

Figure 10 plots the proportion of nodes with finite possi-
bilities when the average degree varies. Herein we observe 
that a higher network density leads to a lower proportion of 
finitely localizable nodes. That is because nodes have higher 
probabilities to form globally rigid components in denser 
networks, and localizing nodes in globally rigid components 
cause no ambiguities at all. 

D. Distribution of Possibilities 
The worst-case complexity of all algorithms could be ex-

ponential in the number of nodes. We investigate this prob-
lem by our simulation results and report the results in Figure 
11-13. Note that the x-coordinate in each figure is all loga-
rithmic. 

Figure 11 shows the cumulative distribution of possibili-
ties of each single node. All the algorithms uniquely localize 
over 94% of nodes. CALL uniquely locates higher proportion 
of nodes than Sweeps does. Moreover, CALL also locates 
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Fig. 13.  Distribution of maximum possibilities. 

 
nodes into more possible positions than Sweeps does. The 
reason is that CALL can locate more nodes in both finite 
states and unique states as shown in Figure 6 and Figure 7. 

Figure 12 shows the cumulative distribution of the aver-
age location possibilities of each network instance. The aver-
age possibilities of networks in each algorithm are less than 4 
in about 90% cases. For average degree, the fluctuation of 
CALL is milder than that of Sweeps. That is because the av-
erage possibility of CALL is averaged by the number of 
nodes it localized. 

Figure 13 plots the cumulative distribution of the maxi-
mum location possibilities in each network instance. The 
maximum possibilities of networks in each algorithm are less 
than 64 in over 90% cases. CALL gets higher maximum pos-
sibilities because CALL finitely localizes more nodes than 
Sweeps does, and the combinatorial explosion becomes more 
serious when operating on a larger set. A combined view of 
the three figures suggests that the costs of CALL and Sweeps 
are of the same level in all aspects. 

To summarize, CALL locates almost all nodes as RRT-3B, 
and outperforms Sweeps about 20% in average. At the same 
time, the cost of CALL and Sweeps is indistinctive. 

VII. CONCLUSIONS 
We present the concept of component and propose a com-

ponent-based approach, CALL, to address the localization 
issue in sparse wireless ad hoc and sensor networks. We form 
basic rules for operations on components. Simulation results 
show that this design significantly outperforms previous de-
signs. The future work leads into several directions. First, we 
will deal with noisy ranging issue. Second, we are going to 
investigate the theoretical bound of localizability using poly-
nomial spatial-temporal cost. 
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